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Abstract—In this paper, we study the correlation of graph da-
ta’s anonymity, utility, and de-anonymity. Our main contributions
include four perspectives. First, to the best of our knowledge,
we conduct the first Anonymity-Utility-De-anonymity (AUD)
correlation quantification for graph data and obtain close-forms
for such correlation under both a preliminary mathematical
model and a general data model. Second, we integrate our AUD
quantification to SecGraph [31], a recently published Secure
Graph data sharing/publishing system, and extend it to Sec-
Graph+. Compared to SecGraph, SecGraph+ is an improved and
enhanced uniform and open-source system for comprehensively
studying graph anonymization, de-anonymization, and utility
evaluation. Third, based on our AUD quantification, we evaluate
the anonymity, utility, and de-anonymity of 12 real world graph
datasets which are generated from various computer systems
and services. The results show that the achievable anonymity/de-
anonymity depends on multiple factors, e.g., the preserved data
utility, the quality of the employed auxiliary data. Finally, we
apply our AUD quantification to evaluate the performance of
state-of-the-art anonymization and de-anonymization techniques.
Interestingly, we find that there is still significant space to improve
state-of-the-art de-anonymization attacks. We also explicitly and
quantitatively demonstrate such possible improvement space.

I. INTRODUCTION

Nowadays, many computer systems and services generate
graph data [1], e.g., social network data [15], [23], [24], [25],
mobility trace-based contact data [17], email network data
[21], network topology data [24]. Mathematically, these data
can be modeled by graphs, where nodes represent users and
edges represent the relationships among users (e.g., friendship-
s, contact-relationship, collaboration-relationship). Therefore,
we refer to this type of data as graph data in this paper.
Graph data are critical for academic research (e.g., the iDASH
Privacy Protection Challenge [26], secure routing research
[13]) and have many government, commercial, and healthcare
applications (e.g., fraud detection [27], terrorist analysis [28],
the Twitter-IBM project [29], disease propagation analysis
[30]). Therefore, graph data are often shared or transferred
to the research community, commercial partners, and other
agencies for data mining tasks and analytics.

Meanwhile, since graph data usually carry sensitive in-
formation of users (e.g., the sexual contact data and other
medical data [15]), privacy concerns arise when the data is
shared/transferred. To protect users’ privacy, many anonymiza-
tion techniques have been proposed [1], e.g., the naive ID re-

moval, random edge addition/deletion [2], k-anonymity-based
techniques [3], [4], [5], [6], aggregation/cluster-based tech-
niques [7], [8], Differential Privacy (DP)-based techniques [9],
[10], [11], [12], and random walk-based technique [13]. Basi-
cally, the primary objective of those anonymization techniques
is to protect users’ privacy and simultaneously preserve as
much data utility as possible. On the other hand, to break graph
users’ privacy, many structure-based de-anonymization attacks
have also been presented [14]-[18], [21], which de-anonymize
users according to their structural similarity in the anonymized
and auxiliary graphs. In addition, to understand why graph data
are vulnerable to structure-based de-anonymization attacks,
several de-anonymization quantification techniques have been
recently developed [19]-[22]. These techniques enable the
understanding of the vulnerability of graph data by specifying
the structural conditions for conducting perfect or partial de-
anonymization.

Although several graph anonymization, de-anonymization,
and de-anonymization quantification techniques have been
proposed, there are still some important yet open problems
in this area [1], such as: is there correlation between the
anonymity, utility, and de-anonymity of graph data? if the
correlation exists, how can it be quantified? what is the perfor-
mance of state-of-the-art anonymization and de-anonymization
techniques and is there room for improvement? Understanding
these open problems are important for users and researchers.
On one hand, it can help users and researchers understand
how much utility is preserved after applying an anonymization
scheme, what is the achievable data anonymity, what is the
achievable de-anonymity given an auxiliary graph, as well as
the correlation between anonymity, utility, and de-anonymity.
On the other hand, it can also help users and researchers
evaluate the performance of state-of-the-art anonymization
and de-anonymization techniques compared to the achievable
theoretical anonymity and de-anonymity.

Contributions. To address the aforementioned problems,
we make the following contributions.

(i) We introduce three metrics to measure the anonymity,
utility, and de-anonymity of anonymized graph data, respec-
tively. Based on these metrics, we conduct a comprehensive
quantification of the correlation of graph anonymity, utility,
and de-anonymity under both the mathematical ER model and



a general data model. To the best of our knowledge, this is
the first work on quantifying the AUD correlation of graph
data and providing close-forms to explicitly demonstrate such
correlation. Our results have important implications on graph
data anonymization and de-anonymization research towards
developing both powerful de-anonymization attacks and ef-
fective anonymization techniques.

(ii) Based on our AUD quantification, we implement
SecGraph+ by adding a quantification module to SecGraph
[31], a recently released uniform and open-source graph data
anonymization and de-anonymization system. The extended
SecGraph+ improves SecGraph from several perspectives:
understanding the accurate AUD correlation of a graph dataset,
guiding users/researchers to configure a proper anonymization
algorithm, conducting objective-oriented on-demand evalua-
tion and so on. SecGraph+ is a uniform and open-source sys-
tem for advanced graph data anonymization, utility evaluation,
and de-anonymization research.

(iii) Based on our correlation quantification, we conduct
a large scale evaluation on the AUD of real world graph
data leveraging 12 datasets that are generated from various
computer systems and services. Our results demonstrate that
the achievable anonymity/de-anonymity of graph data depends
on multiple factors, e.g., the utility carried by the data, the
quality of the employed auxiliary data.

(iv) Based on our AUD quantification, we evaluate the per-
formance of state-of-the-art anonymization and de-anonymiza-
tion techniques. Interestingly, we find that there is still signifi-
cant room for state-of-the-art de-anonymization techniques to
be improved. For instance, when using the latest seed-free de-
anonymization attack ODA [21] to de-anonymize a Facebook
dataset (64K users, 0.82M edges) that is anonymized by the
state-of-the-art DP-based anonymization technique [9], [10],
our evaluation shows that more than 83.4% theoretically de-
anonymizable users cannot be de-anonymized by ODA.

II. RELATED WORK

Attacks. Initially, in [14], Backstrom et al. introduced the
structure-based de-anonymization attacks to graph data. Later,
in [15], Narayanan and Shmatikov proposed a two-phase de-
anonymization attack to de-anonymize large-scale graph data.
Following [15], several improved two-phase de-anonymization
attacks were introduced, e.g., the community-enhanced at-
tack [16], mobility trace de-anonymization [17], adaptive de-
anonymization [18], etc. In [21], Ji et al. proposed a seed-
free de-anonymization attack on graph data by optimizing an
objective function.

Defenses. In [2], Ying and Wu proposed two spectrum-
preserved randomization techniques to anonymize graphs:
Rand Add/Del, under which existing edges are randomly
deleted and non-existing edges are randomly added, and Rand
Switch, under which randomly selected pairs of edges are
switched. To defend against neighborhood attacks, Zhou and
Pei in [3] extended the k-anonymity to graph data. Another
similar work is [4], where Liu and Terzi proposed a k-degree
anonymous scheme for graph data. In [5], Zou et al. extended

the k-anonymity idea to k-automorphism, under which a user
cannot be distinguished from his/her k − 1 symmetric users
in an anonymized graph based on the structural information.
Taking a similar idea, in [6], Cheng et al. proposed k-
isomorphism, where the graph anonymization is achieved by
forming k pairwise isomorphic subgraphs. In [7], Hay et al.
proposed an aggregation-based approach to anonymize graph
data. Similarly, in [8], Thompson and Yao presented a cluster-
based graph anonymization technique.

To protect graph users’ link information, Sala et al. in-
troduced a graph anonymization technique using Differential
Privacy (DP) [9]. Another similar work is [11], where Wang
and Wu also developed a DP preserved technique for degree-
correlation based graph anonymization. Based on the structural
inference over the hierarchical random graph model, in [12],
Xiao et al. also proposed a DP based graph anonymization
scheme. In [13], Mittal et al. proposed a random walk based
method to protect graph link privacy. Recently, Ji et al.
implemented SecGraph, a uniform evaluation system for graph
data anonymization and de-anonymization [31].

Theoretical Foundations. Recently, the de-anonymizability
quantification problem has drawn a lot of attention from
researchers. In [19], Pedarsani and Grossglauser studied the
de-anonymizability of graph data under the ER model. In [20],
Korula and Lattanzi quantified the de-anonymizability of graph
data under both the ER model and the Preferential Attachment
(PA) model. Ji et al. quantified the structural conditions of both
perfect de-anonymization and partial de-anonymization under
a general statistical data model for seed-free and seed-based
attacks in [21] and [22].

III. SYSTEM MODEL AND DEFINITIONS

Utility. First, we model the raw data (e.g., social network
data, email networks, contact graphs) for sharing/publishing
by a graph Gr = (V r, Er), where V r = {1, 2, · · · } and
Er = {ei,j |i, j ∈ V r} characterize the set of users and
the set of relationships among users in the dataset respec-
tively. Let |V r| = n, i.e., the number of users is n. When
sharing/publishing Gr, it is first anonymized by an arbitrary
anonymization technique denoted by Π. Let Ga = (V a, Ea) =
Π(Gr) be the anonymized graph. Without loss of general-
ity, we assume V a = V r (this is consistent with existing
anonymization techniques [2]-[13]).

As shown in [2]-[12], the utility of Ga can be measured by
many perspectives, e.g., degree distribution, cluster coefficient,
network resilience etc. These metrics demonstrate the utility of
the data from different perspectives. However, a general metric
does not exist. On the other hand, we notice that existing
utility metrics depend highly on how structurally/topologically
similar Gr and Ga are. Therefore, we define an edge-based
general utility metric µ. The objectives of defining µ are the
following: consistent with existing utility metrics; sufficiently
general to characterize the correlation between the raw and
anonymized graphs; and mathematically tractable when quan-
tifying the correlation of anonymity, utility, and de-anonymity.
For Ga = Π(Gr), it is defined as µ(Ga) = |Ea∩Er|+|Ea∩Er|

|EU | ,



where | · | is the cardinality of a set, EU is the universal set
of all the possible edges that can be formed among users in
V r, Ea = EU \ Ea = {ei,j |ei,j /∈ Ea}, and Er = EU \ Er.
To be more accurate, we further define µ1 = |Ea∩Er|

|Ea| and

µ0 = |Ea∩Er|
|Ea| . Then, µ(Ga) = µ1|Ea|+µ0|Ea|

|EU | . Therefore,
when µ1 = µ0, we have µ(Ga) = µ1 = µ0. From the defini-
tion of µ(Ga), it measures the degree of Ga on preserving the
structure (both the existing and the non-existing relationships)
of Gr. We further experimentally demonstrate the performance
of µΠ in Section VII.

De-anonymity. To de-anonymize Ga, as in [15], [16], [17],
[21], [22], we assume an auxiliary graph Gu = (V u, Eu)
is available to the adversary. In reality, Gu can be obtained
through multiple means, e.g., online crawling, data mining and
aggregation, government publishing, third-party applications
[15], [16], [17], [21]. Without loss of generality, we assume
V u = V r = V a = V (this is a common assumption in
existing analysis [19], [20], [21], [22]). When V u ̸= V a, we
can (i) either apply our analysis to the overlap users of V a

and V u, or (ii) simply redefine V a = V a ∪ (V u \ V a) and
V u = V u∪ (V a \V u) without changing Ea or Eu. Since Gu

and Gr/Ga characterize the relationship of a same group of
users, it is reasonable to assume Gu and Gr/Ga are correlated
with each other. For instance, let Gr be an email network and
Gu be an auxiliary Google+ graph of the same user set V .
Then, for two users Alice and Bob in V , if they have a con-
nection in Gr, they are also more likely to have a connection
in Google+. To characterize this correlation between Gr and
Gu, we statistically define Pr(ei,j ∈ Eu|ei,j ∈ Er) = τ,
and Pr(ei,j ∈ Eu|ei,j /∈ Er) = γ, i.e., statistically, an edge
appearers in Gu with probability τ when it also appears in Gr

while with probability γ when it does not appear in Gr.
To be consistent with existing work [19], [20], [21], [22], we

mathematically define a de-anonymization attack as a mapping
σ : V a → V u. Specifically, σ := {(i, σ(i))|i ∈ V a, σ(i) ∈
V u}. To simplify the discussion, a mapping (i, σ(i)) is correct
when i = σ(i) and incorrect otherwise. Given σ, let ω be
the number of incorrect mappings in σ. Then, the ratio of
successfully de-anonymized users in Ga under σ is defined
as βσ = n−ω

n . Let S be the set of all the possible de-
anonymization schemes. Since |V u| = |V a| = n, we have
n! possible mappings from V a to V u, i.e., |S| = n!. The de-
anonymity of Ga is defined as β(Ga) = max{βσ|σ ∈ S}.

From the definition, the de-anonymity of Ga is measured
by the maximum ratio of users that can be successfully de-
anonymized. Intuitively, for an anonymized graph Ga, its
practical de-anonymity depends on multiple factors, e.g., the
correlation between the anonymized graph and the auxiliary
graph. Therefore, it is difficult, if not possible, to derive the
exact β(Ga) for an arbitrary Ga. A practical quantification
would seek to understand the de-anonymity of Ga relative to
the utility carried by Ga. Toward this objective, we quantify
the lower bound of the de-anonymity of Ga given the utility
of Ga and an auxiliary graph in our AUD quantification.

Anonymity. We employ an information theoretical approach

to define the anonymity of Gr/Ga given Π and σ, which is
similar to that in [16]. For a user i ∈ V a and ∀j ∈ V u,
let pi,j be the probability of the event that i is mapped to
(de-anonymized as) j in a de-anonymization scheme σ (i.e.,
(i, j) ∈ σ) and this mapping is a correct de-anonymization,
i.e., j = σ(i) (i and j correspond to the same user). For
instance, if σ randomly and uniformly maps each i ∈ V a to
any user j ∈ V u, then we have pi,j = 1

n , i.e., i is successfully
de-anonymized with probability 1

n under σ.
Based on the definition of pi,j , we define PΠ,σ(i) =

{pi,j |j ∈ V u} to be the mapping probability distribution of
i under σ. Then, using information theory, the uncertainty
of de-anonymizing i can be measured by entropy H(i) =
−

∑
j∈V u

pi,j log pi,j . When PΠ,σ(i) = {pi,j = 1
n |j ∈ V u} (i

is mapped to any user in V u randomly and uniformly), i.e., the
successful de-anonymization probability of i is pi,j = 1

n for
∀j ∈ V u under Π, H(i) reaches its maximum value log n. In
this scenario, an anonymization scheme Π is optimal from the
perspective of protecting the privacy of i. On the other hand,
if PΠ,σ(i) = {pi,1 = 0, · · · , pi,i−1 = 0, pi,i = 1, pi,i+1 =
0, · · · , pi,n = 0}, i.e., the probability that i is successfully de-
anonymized is 1, H(i) reaches its minimum value 0. In this
scenario, Π cannot protect the anonymity/privacy of i at all,
i.e., the de-anonymization scheme σ can successfully break
the privacy of i.

Based on H(i), we can quantify the uncertainty of de-
anonymizing Ga, denoted by H(Ga), by the average en-
tropy of all the users [16], i.e., H(Ga) = 1

n

∑
i∈V a

H(i). Let

Hmax(G
a) be the maximum entropy that Ga can achieve.

Since max{H(i)} = log n, we have Hmax(G
a) = log n.

Here, if H(Ga) = Hmax(G
a) = log n, Ga achieves the

optimal anonymity. Then, the anonymity of Ga is defined as
α(Ga) = H(Ga)

Hmax(Ga) = H(Ga)
logn , which measures how optimal

Ga is on achieving uncertainty. Specifically, α(Ga) ∈ [0, 1],
where 1 implies Ga achieves the best anonymity while 0
implies no anonymity at all.

From the anonymity definition, it is measured by the uncer-
tainty of the process of de-anonymizing Ga. When studying
the AUD correlation, our objective is to quantify the upper
bound of the achievable α(Ga) relative to the utility preserved
in Ga and the available auxiliary graph Gu.

In the remainder of this paper, we use µ = µ(Ga), β =
β(Ga), and α = α(Ga) for convenience of discussion. In
addition, for the lowercase parameter x, we define x = 1−x,
e.g., when x = µ, x = µ = 1− µ.

IV. AUD QUANTIFICATION: ER MODEL

In this section, we quantify the AUD of graph data under
the Erdős-Rényi (ER) model.

Preliminaries. Suppose Gr follows the ER model G(n, p),
i.e., there are n users in Gr and ∀i, j ∈ V r, the edge ei,j
appeares in Er with probability p (Pr(ei,j ∈ Er) = p).
When sharing/publishing Gr, it is first anonymized by an ar-
bitrary anonymization scheme Π and the obtained anonymized
graph is Ga. ∀i ∈ V a, its neighborhood is defined as



Na
i = {j|∃ei,j ∈ Ea}. Similarly, ∀i ∈ V u, we define

Nu
i = {j|∃ei,j ∈ Eu}.
Given σ : V a → V u, to measure the quality of the

mapping (i, j) ∈ σ, similarly as in [19], [21], [22], we
define a Neighborhood Difference Function (NDF) ∆σ:(i,j) =
|(

∪
v∈Na

i

{σ(v)}) \Nu
j |+ |(

∪
v∈Nu

j

{σ−1(v)}) \Na
i |, i.e., ∆σ:(i,j)

counts the neighborhood difference of i ∈ V a and j ∈ V u

under σ. Then, to measure the performance of σ, we define
the NDF of σ as ∆σ =

∑
i∈V a

∆σ:(i,σ(i)).

Quantification. We quantify the AUD of an anonymized
graph in this subsection. First, we quantify the NDF of a given
σ. Given Π, Ga, Gu, and σ, let µ be the utility of Ga, qc(µ) =
pµ1τ + p · µ0 · γ + pµ1τ + pµ0γ, and qi,c(µ) = (pµ1 + p ·
µ0)(pτ +p ·γ)+(pµ1+pµ0)(pτ +pγ). Then, we quantify the
NDF of σ in Lemma 1. We omit the proof due to the space
limitations.

Lemma 1. If there are ω incorrect mappings in σ, ∆σ ∼
n → ∞

B(
(
n−ω
2

)
, qc(µ)) +B(ω(n− ω) +

(
ω
2

)
, qi,c(µ)), where B(·, ·)

denotes a binomial variable.

Based on Lemma 1, we can quantify the correlation of the
utility, anonymity, and de-anonymity of an anonymized graph
as shown in Theorem 1. The proof is omitted due to the space
limitations.

Theorem 1. Let f(µ) =
(qi,c(µ)−qc(µ))

2

8(qi,c(µ)+qc(µ))
be a utility func-

tion depending on the utility of Ga and ω be the num-
ber of possibly incorrectly de-anonymized users in a de-
anonymization scheme. Then, when qi,c(µ) > qc(µ) and
f(µ) = Ω( 2 lnn+1

ωn−ω2/2−ω/2 )
1, (i) β = Ω(n−ω

n ); and (ii)
α = O(ωn logn ω).

Remarks. In Theorem 1, we quantify the correlation be-
tween µ, β, and α. From the quantification results, the lower
bound of the utility function f(µ) is defined by a decreasing
function of ω (the number of possible incorrect mappings).
When parameter ω increases, a looser condition is required for
the utility function f(µ), followed by a lower de-anonymity
β and a higher anonymity α of Ga are achievable. On the
other hand, if higher de-anonymity is expected (i.e., lower
anonymity can be achieved by Ga), a stricter condition is
required on f(µ). Furthermore, from the proof of Theorem
1, When the specified conditions on qc(µ), qi,c(µ), and f(µ)
are satisfied, a de-anonymization scheme σ that correctly de-
anonymizes at least n − ω users can be found by a brute-
force searching algorithm. Although the searching algorithm
has a time complexity of O(n!), which makes it computation-
ally infeasible in reality, practical heuristics/approximation-
optimization based de-anonymization attacks can be designed,
e.g., [15], [17], [21]. Therefore, the significance of our quan-
tification is to help users/researchers understand the theoretical
correlation of anonymized graph data’s utility, anonymity,

1Here, Ω(·) is employed to specify the lower bound in complexity theory.
Formally, f(x) = Ω(g(x)) implies f(x) ≥ k ·g(x) for some positive k, i.e.,
∃k > 0, ∃x > x0 such that ∀x > x0, f(x) ≥ k · g(x).

and de-anonymity; and thus improve the anonymization/de-
anonymization research.

V. AUD QUANTIFICATION: IN GENERAL

In this section, we quantify the correlation of µ, β, and α
under a general model, where the graph can have an arbitrary
degree distribution.

We assume Gr(V r, Er) can follow an arbitrary degree
distribution. Let mr = |Er|. The graph density of Gr is
defined as ρ = mr

|EU | = 2mr

n(n−1) . Let ϕc(µ) = µ1τ + µ1τ ,
ϕi,c(µ) = µ1(ρτ +ρ ·γ)+µ1(ρτ +ργ), ψc(µ) = µ0 ·γ+µ0γ,
and ψi,c(µ) = µ0(ρτ+ρ·γ)+µ0(ρτ+ργ). Before quantifying
the correlation of µ, β, and α, we first use Lemma 2 to
quantify the NDF of a de-anonymization scheme σ, which
has ω incorrect mappings. The proof is omitted due to the
space limitations.

Lemma 2. Let θmin = min{ϕc(µ), ψc(µ)}, θmax = max{
ϕc(µ), ψc(µ)}, τmin = min{ϕi,c(µ), ψi,c(µ)}, and τmax =
max{ϕi,c(µ), ψi,c(µ)}. If there are ω incorrect mappings in
σ, ∆σ ≥ B(

(
n−ω
2

)
, θmin) + B(ω(n − ω) +

(
ω
2

)
, τmin) and

∆σ ≤ B(
(
n−ω
2

)
, θmax) +B(ω(n− ω) +

(
ω
2

)
, τmax).

In Lemma 2, we derive the lower and upper bounds of ∆σ

for a given σ. Based on Lemma 2, we quantify the correlation
of µ, β, and α under a general data model in Theorem 2. The
proof is omitted due to the space limitations.

Theorem 2. Let g(µ) = (τmin−θmax)
2

8(τmin+θmax)
be a utility function

depending µ, and ω be the number of possibly incorrectly de-
anonymized users in a de-anonymization scheme. Then, when
τmin > θmax and g(µ) = Ω( 2 lnn+1

ωn−ω2/2−ω/2 ), (i) β = Ω(n−ω
n );

and (ii) α = O(ωn logn ω).

Remarks. From Theorem 2, the correlation of µ, β, and α
under a general model is similar to that under the ER model.
However, they are different with respect to required condi-
tions and generality/applicability. Fundamentally, to achieve
the same anonymity/de-anonymity, the conditions under the
general model (specified by g(µ), τmin, and θmax) are stricter
than that under the ER model (specified by f(µ), qc(µ), and
qi,c(µ)). On the other hand, the quantification in Theorem
1 is dedicated for graphs under the ER model while the
quantification in Theorem 2 is applicable to graphs following
any distribution.

VI. SECGRAPH+: AN ENHANCED UNIFORM AND
OPEN-SOURCE SECURE GRAPH DATA

SHARING/PUBLISHING SYSTEM

SecGraph and Limitations. In [31], [32], Ji et al. develope-
d a uniform and open-source Secure Graph data sharing and
publishing system, SecGraph. The architecture of SecGraph is
shown in Fig.1 (a). SecGraph consists of three main modules:
the Anonymization Module (AM) where 11 state-of-the-art
graph anonymization algorithms are implemented, the Utility
Module (UM) where 12 graph utilities (e.g., degree, joint
degree, cluster coefficient, path length) and 7 application
utilities (e.g., influence maximization, community detection,
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Fig. 1. Architectures of SecGraph and SecGraph+. AM = Anonymization
Module, UM = Utility Module, and DM = De-anonymization Module.

secure routing) are implemented, and the De-anonymization
Module (DM) where 15 modern de-anonymization attacks are
implemented. SecGraph has meaningful implications to both
data owners and researchers. For data owners, they can use
SecGraph to anonymize their data, measure the anonymized
data’s graph and application utilities, and evaluate the data’s
actual vulnerability against de-anonymization attacks. For re-
searchers, they can use SecGraph to conduct fair analysis and
evaluation of existing and newly developed anonymization
and/or de-anonymization techniques.

Although SecGraph is meaningful to both data owners and
researchers, it still has several limitations in helping users and
researchers understand the precise anonymity, utility, and de-
anonymity of anonymized graph data. First, it is difficult to
employ SecGraph to understand the accurate correlation of the
anonymity, utility, and de-anonymity of a graph dataset. As
shown in [31] and Fig.1 (a), a user/researcher must repeatedly
execute the “data - AM - anonymized data - UM/DM” process
several times to obtain some intuition of the AUD correlation
of a graph dataset. However, such AUD correlation intuition
could be biased depending on the evaluation and parameter
settings and thus misleading. Second, it is not trivial to employ
SecGraph to conduct utility/anonymity-oriented on-demand
evaluation. For instance, with the objective of preserving a spe-
cific amount of data utility, it is unclear what is the maximum
achievable anonymity and how to configure an anonymization
algorithm to achieve such anonymity. Again, a user must
repeat the “data - AM - anonymized data - UM/DM” process
to obtain some anonymized data with a higher anonymity.
However, it is still unclear how this achieved anonymity
compares to the maximum achievable anonymity. Furthermore,
the evaluation process could be very time consuming and
inefficient. Similarly, when evaluating the performance of a
de-anonymization attack, it is difficult to tell how optimal this
de-anonymization attack is compared to the achievable de-
anonymity.

SecGraph+: Towards Comprehensive Graph
Anonymization, Utility Evaluation, and De-anonymization.
To address the limitations of SecGraph, we enhance it by
integrating our AUD quantification and implement SecGraph+.
Specifically, in SecGraph+, we add one more theoretical
evaluation module, named the AUD correlation quantification
module, as shown in Fig.1 (b). Since SecGraph is a module-

TABLE I
DATA STATISTICS.

Name Type n m ρ davg
Wiki (WK) Wiki 2.4M 5M 1.63E-6 3.9

Gnutella (GT) P2P 36.7K 88.3K 1.32E-4 4.8
YouTube (YT) SN 1.1M 3M 4.64E-6 5.3
Oregon (OG) AS 11.5K 32.7K 4.98E-4 5.7

Brightkite (BK) LSN 58K .2M 1.32E-4 7.5
Gowalla (GW) LSN .2M 1M 4.92E-5 9.7

Enron (EN) Email 36.7K .2M 3.19E-4 10.7
Skitter (SK) AS 1.7M 11.1M 7.73E-6 13.1

Facebook (FB) SN 64K .82M 4.02E-4 25.64
Google+ (G+) SN 4.7M 90.8M 8.24E-6 38.7
Twitter (TW) SN .5M 14.9M 1.20E-4 54.8
Flickr (FL) SN 80.5K 5.9M 1.82E-3 146.56

based open-source system (available at [32]), the proposed
SecGraph+ can be implemented directly by integrating our
AUD correlation quantification techniques.

According to our evaluation in Section VII and Section VIII,
the extended SecGraph+ is more useful and meaningful to
users and researchers compared to SecGraph. First, instead
of repeating the “data - AM - anonymized data - UM/DM”
process to obtain some intuition, users and researchers can
accurately evaluate the explicit AUD correlation of a graph
dataset (as shown by our evaluation in Section VII). Second,
the extended SecGraph+ is more helpful and more time effi-
cient in conducting objective-oriented on-demand evaluation.
For instance, after specifying the utility demand, users and
researchers can employ SecGraph+ to statistically evaluate
the upper bound of the achievable anonymity and the low-
er bound of the achievable de-anonymity. This can guide
users/reserachers to further determine and configure a proper
anonymization technique and/or a powerful de-anonymization
attack (as shown in Section VII and Section VIII). Finally,
SecGraph+ is also more meaningful for future anonymization,
de-anonymization, and utility evaluation research. The quan-
tification results of the AUD module can be used not only
for evaluating the performance of existing anonymization/de-
anonymization techniques, but it can also shed light on devel-
oping improved anonymization/de-anonymization techniques
that (approximately) achieve the theoretical anonymity/de-
anonymity bounds.

SecGraph+ is an advanced open and uniform system for
graph data anonymization, de-anonymization, and utility eval-
uation (the SecGraph+ website is anonymized according to
the conference’s anonymous review rule). Integrating AUD
to a publicly available research system/tool facilitates the
application of our quantification techniques to future graph
anonymization and de-anonymization research. Since Sec-
Graph has been well evaluated in [31], we focus on evaluating
our AUD quantification (the AUD module of SecGraph+)
leveraging real world graph data in the following sections.

VII. UTILITY METRIC AND AUD EVALUATION

A. Datasets

In the evaluation, we employ 12 real world graph datasets,
which are generated from various computer systems: Social
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Fig. 2. The performance of the utility metric µ.

Networks (SN), Location-based Social Networks (LSN), Email
networks, WikiTalk networks (Wiki), P2P networks (P2P),
and Autonomous Systems (AS). All the datasets are now
publicly available and can be found at Berkeley Datasets [23],
Stanford SNAP [24], and ASU Datasets [25]. We show the
basic statistical information of the 12 datasets in Table I, where
n, m, ρ, and davg denote the number of users, the number of
edges, the graph density, and the average degree of each user,
respectively.

B. Performance of the Utility Metric µ

Before evaluating our AUD quantification, we first examine
the performance of our utility metric µ. According to the def-
inition of µ, it measures the performance of Ga on preserving
the structure (both the existing and the non-existing relation-
ships) of Gr. Furthermore, since µ is defined based on µ1 and
µ0, we examine the effectiveness of µ by evaluating the utility
of Ga with respect to different µ1 and µ0. Due to the space
limitations, here, we employ three datasets Enron, Facebook,
and Twitter as example datasets for the evaluation, and the
evaluated utilities of Ga are Degree distribution (Deg), Path
Length distribution (PL), and Cluster Coefficient distribution
(CC). The reason we choose to evaluate Deg, PL, and CC
is because they are the most fundamental graph utilities and
most of the other graph utilities (e.g., infectiousness, reliable
email, secure routing, and influence propagation) are highly
dependent on them [2]-[11].

Methodology. We employ the same utility evaluation
methodology as in [31], [32]. Specifically, (i) given µ1 and
µ0 and a raw dataset Gr, we employ the Rand Add/Del
anonymization algorithm in [2] to anonymize Gr (by deleting
existing edges and adding new edges) such that the obtained
anonymized graph Ga has utility of µ1 and µ0; (ii) compute
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Fig. 3. AUD vs. µ1.

the Deg, PL, and CC utilities of both Gr and Ga; and (iii)
compute the cosine similarity of each utility of Gr and Ga 2.

Results. We show the evaluation results in Fig.2, where
when changing µ1 in each evaluation, we set µ0 = 1− µ1·|Ea|

|EU\Ea|
(note that, µ0 is an increasing function of µ1)3. From Fig.2,
we have the following two observations.

First, with the increase of our utility metric µ1/µ0, all
the three fundamental graph utilities Deg, PL, and CC are
also increasing, which demonstrates that our utility metric is
consistent with existing utility metrics. The reason is because
µ1 and µ0 measures the degree of Ga to preserve the existing
and non-existing relationships of Gu. When Ga and Gu

share more common relationships, they are more structurally
similar followed by high utility of Ga. Furthermore, based on
Theorems 1 and 2, µ1/µ0 also makes our AUD quantification
tractable. Therefore, our utility metric is effective.

Second, the changing magnitude of PL is smaller than the
other two utilities with the increase of µ1/µ0. This is because
the graph diameters of Enron, Facebook, and Twitter are 10,
10, and 7 respectively, which are relatively small. Therefore,
the impact of anonymization (adding/deleting edges) to PL is
also relatively small. On the other hand, when µ1/µ0 is small,
a significant number of relationships in Gr have been changed
in Ga. Since Deg and CC are local graph properties, they are
more sensitive to local edge changes, i.e., µ1/µ0.

2Given two vectors, A =< A1, A2, · · · , AN > and B =<
B1, B2, · · · , BN >, the cosine similarity between A and B is defined as

cos(A,B) =
∑N

i=1 Ai×Bi√∑N
i=1(Ai)2×

√∑N
i=1(Bi)2

. For our purpose, when evaluating

the Deg, PL, and CC utilities of the anonymized graph, we use the cosine
similarity of their distributions in the anonyimized graph and auxiliary graph.

3The purpose of this setting is to make Ga have relatively similar
performance on preserving the existing and non-existing relationships of Gr .



C. AUD Evaluation

Methodology. For each dataset, it is the raw graph Gr in
our evaluation. Then, given µ1, µ0, τ , and γ, the structures
of both Ga and Gu can be derived from Gr. Finally, we
apply our quantification technique in Section V to quantify
the anonymity and de-anonymity of Ga based on Gu. Specif-
ically, according to our proofs in Theorem 1 and Theorem 2,
statistically, the optimum de-anonymization scheme (mapping)
incudes the least NDF. Therefore, after specifying Ga and
Gu, we can drive the anonymity and de-anonymity of Ga

based on the utility preserved in Ga and Gu (relative to
the raw data Gr) using Theorem 2 (the proof of Theorem
2). Note that, here, we are not trying to quantify the exact
anonymity/de-anonymity of Ga (and thus, we do not need to
seek the optimum de-anonymization scheme). Our objective
is to derive the upper bound of the achievable anonymity
and the lower bound of the achievable de-anonymity with
statistical guarantee. Furthermore, in all the evaluations in
this subsection, the default parameter settings are µ1 = 0.7,
µ0 = 0.9, τ = 0.75, and γ = 0.02.

AUD vs. µ. First, we evaluate the anonymity and de-
anonymity of the datasets in Table I with respect to the utility
(characterized by µ1 and µ0) preserved by Ga. Due to the
space limitations, we show the results of AUD vs. µ1 in Fig.3
while omitting the results of AUD vs. µ0. From Fig.3, we have
three observations.

First, when µ1 increases, the de-anonymity of each dataset
increases while the anonymity of each dataset decreases. This
is because µ1 indicates the degree of Ga on preserving the
existing relationships of Gr. A high µ1 implies that Ga is
more structurally similar to Gr, and thus is more structurally
similar to Gu (for a given τ and γ). Therefore, more users
in Ga are de-anonymizable leveraging the structural similarity
between Ga and Gu.

Second, generally, the datasets with high davg (average
degree) are more de-anonymizable (less anonymous) than that
with low davg . This is because a higher davg implies richer
local structural information is available in both Ga and Gu for
de-anonymizing each user on average. Thus, a user is more
likely to be correctly de-anonymized by structure-based de-
anonymization attacks.

Finally, both the anonymity and the de-anonymity of graph
data may exhibit the percolation phenomena4, i.e., when µ1 is
below some threshold value, a graph achieves almost perfect
anonymity; while when µ1 is above some threshold value, an
obvious loss of the anonymity happens. This implies that the
actual anonymization/de-anonymization performance is sensi-
tive to the utility carried by Ga and the structural similarity
between Ga and Gu. Some increase on the similarity of Ga

4It has been observed in [15], [22], the number of de-anonymizable users
in seed-based two-phase de-anonymization attacks may exhibit the percolation
phenomena with respect to the number of available seeds, i.e., when the
number of seeds is below some threshold value, only a few users can be
correctly de-anonymized; while when the number of seeds is above some
threshold value, a significant portion of users are de-anonymizable.
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Fig. 4. AUD vs. τ .

and Gu can induce a significant loss (resp., improvement) of
the graph anonymity (resp., de-anonymity).

AUD vs. τ and γ. When τ increases, the anonymity and
de-anonymity of each dataset are shown in Fig.4, from which
we have two observations.

First, with the increase of τ , the anonymity (resp., de-
anonymity) of each dataset decreases (resp., increases). This is
because τ indicates how similar Gu and Gr are with respect to
the existing relationships in Gr. Thus, a high τ implies Gu is
more structurally similar to Gr and thus to Ga (when µ1, µ0,
and γ are given), followed by Ga is more de-anonymizable
by structure-based de-anonymization attacks leveraging Gu.

Second, again, the datasets with high davg are more de-
anonymizable than those with low davg . The reason is also the
same as we analyzed in Fig.3. A higher davg implies richer
local structural information is available, which further enables
more effective structure-based de-anonymization. In addition,
similar to that in Fig.3, the anonymity and de-anonymity of
a dataset may exhibit the percolation phenomena with respect
to τ , e.g., Wiki, Gnutella, YouTube, and Oregon.

We show AUD vs γ in Fig.5, from which we have three
observations.

First, when γ increases, the anonymity of each dataset
increases while the de-anonymity of each dataset decreases.
This is because γ indicates the difference of Gr and Gu on
users’ non-existing relationships. Therefore, a large γ implies
more structural difference between Gr and Gu with respect
to the non-existing relationships, followed by more structural
difference between Ga and Gu. Hence, less structural informa-
tion can be leveraged to conduct successful de-anonymization
and the anonymity of Ga is increased.

Second, generally, the anonymity and de-anonymity of
datasets with low davg are more sensitive to the change of
γ than that of datasets with high davg . This is because for
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Fig. 5. AUD vs. γ.

graphs with lower davg , the available structural information
for de-anonyming each user is relatively less, and thus the
structural/edge difference between Ga and Gr has more im-
pacts on the achievable anonymity and de-anonymity.

Finally, similar as the results in Fig.3 and Fig.4, the
anonymity and de-anonymity of a dataset may exhibit the
percolation phenomena (e.g., Wiki).

VIII. AUD-BASED EVALUATION OF STATE-OF-THE-ART
TECHNIQUES

Methodology In this section, we conduct an AUD-
based evaluation of the performance of state-of-the-art graph
anonymization and de-anonymization techniques. The eval-
uation methodology is as follows: (i) given some graph
datasets, anonymizing these datasets using state-of-the-art
anonymization techniques; (ii) employing state-of-the-art de-
anonymization attacks to de-anonymize the anonymized data
and studying the data’s practical de-anonymity; (iii) em-
ploying our AUD quantification technique to quantify the
theoretical de-anonymity (anonymity) of the anonymized data;
and (iv) finally, analyzing the practical and theoretical de-
anonymity of the anonymized data.

Evaluation Setting. Here, we use three example datasets
Enron, Facebook and Twitter as shown in Table I for this group
of evaluation. The employed anonymization techniques are the
latest cluster-based anonymization technique [8], denoted by
Cluster, and the latest differential privacy-based anonymization
technique [9], [10], denoted by DP. As we summarized in
Section II, Cluster is a technique to make the users within
a cluster have same local structures, and DP is a technique
to make the dK-series of the anonymized graph meet a DP
requirement. The employed de-anonymization attacks are the
Distance-Vector (DV) based scheme proposed in [17] and the
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Fig. 6. AUD-based Evaluation of state-of-the-art anonymization and de-
anonymization techniques.

Optimization-based De-Anonymization (ODA) scheme pro-
posed in [21]. As summarized in Section II, DV is a powerful
seed-based de-anonymization attack while ODA is the latest
seed-free de-anonymization attack.

When anonymizing the datasets, the key anonymization
parameter for Cluster is the cluster size ζ [8] and for DP is the
differential privacy parameter ξ [9], [10]. Basically, a larger
ζ indicates a higher anonymization level for Cluster while a
smaller ξ indicates a higher anonymization level for DP. In our
evaluation, we consider the scenarios of ζ = 10 and ζ = 60
for Cluster and ξ = 150 and ξ = 300 for DP (which are
similar to the settings in [8], [9]), respectively. For DV, since it
requires seeds to bootstrap the de-anonymization, we randomly
select 50 seed mappings from Ga to Gu in each evaluation.
During the de-anonymization evaluation, the auxiliary datasets
are obtained using a random edge adding/deleting process
according to the specified τ and γ. In all the evaluations, we
set γ = τ ·|Er|

|Er| . Furthermore, the required parameters µ1 and
µ0 for AUD quantification can be obtained according to their
definitions given Gr and Ga. For each group of evaluation, it
will be repeated 50 times and the result is the average of the
50 runs.

Results. Let σ be a de-anonymization attack (e.g., DV and
ODA) and nc be the number of users that are successfully
de-anonymized under σ. Then, the practical de-anonymity
of an anonymized graph under σ is defined as β(σ) =
nc

n . Furthermore, to be consistent with previous notations,
we use β(·) (e.g., β(Enron)) to denote the AUD-based de-
anonymity of a dataset, i.e., the theoretical de-anonymity.
Then, we show β(σ)

β(Enron) , β(σ)
β(Facebook) , and β(σ)

β(Twitter) under differ-
ent anonymization/de-anonymization scenarios in Fig.6, where
“Cluster” and “DP” represent the anonymization algorithms,
10, 60, 150, and 300 represent the anonymization parameters,
and DV and ODA represent the de-anonymization attack-



s, respectively. For instance, Cluster10-DV means that the
anonymization algorithm applied is Cluster, the anonymization
parameter used is 10, and the employed de-anonymization
attack is DV. From Fig.6, we have three observations.

First, when τ increases, β(σ)
β(·) also has some increase, which

implies that both DV and ODA can de-anonymize more users
regardless of whether the dataset is anonymized by Cluster
or DP. This because a large τ implies Ga and Gu are more
structurally similar and thus Gu is more structurally similar
to Ga. Therefore, more anonymized users can be successfully
de-anonymized based on the structural information.

Second, for the scenarios of using Cluster as the anonymiza-
tion algorithm, Cluster60 achieves better anonymity than Clus-
ter10. This is because more users are made structurally similar
under Cluster60 than that of Cluster10. However, intuitively,
Cluster60 also sacrifices more data utility. Similarly, DP150
achieves better anonymity than DP300 at the cost of sacrificing
more data utility. Overall, the datasets anonymized by DP
achieves a better anonymity than that of Cluster. This is be-
cause DP changes more structural information of Ga than that
of Cluster, i.e., the datasets anonymized by Cluster achieves a
better utility than DP.

Finally and interestingly, there is still significant room for
state-of-the-art de-anonymization techniques to be improved.
From Fig.6, we have β(σ)

β(·) < 0.95 in all the scenarios. Specif-

ically, in the scenarios where DP is used, we have β(σ)
β(Enron) <

0.25, β(σ)
β(Facebook) < 0.5, and β(σ)

β(Twitter) < 0.16 for both DV and
ODA. Note that, according to our quantification, β(·) is only
the lower bound of the de-anonymity of an anonymized graph.
Therefore, the practical de-anonymity achieved by state-of-the-
art de-anonymization attacks is much lower than the achievable
theoretical de-anonymity, i.e., theoretically, significant room
exists to improve existing de-anonymization attacks.

IX. CONCLUSION

In this paper, we conduct the first AUD correlation quan-
tification for anonymized graph data and obtain close-forms
under both the ER model and a general data model. Then, to
facilitate the application of our quantification technique and
to address the limitations of SecGraph, we integrate our AUD
quantification to SecGraph as a new evaluation module and
implement SecGraph+. Third, based on our quantification, we
conduct a large scale evaluation on the anonymity, utility,
and de-anonymity of real world graph data leveraging 12
datasets that are generated from various computer systems and
services. Finally, we evaluate the performance of state-of-the-
art anonymization and de-anonymization techniques in terms
of our AUD quantification. We find that there is still significant
space to improve existing de-anonymization attacks.
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